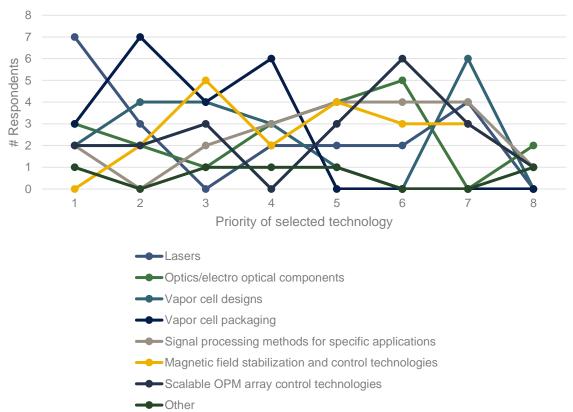


WOPM 2023 Magnetometer Enabling Technology Survey

Date here

Presenter Title of Presenter email | phone | other

Question 1


Please rank the impact investments in component technologies could have on the OPM community by dragging the most impactful technologies to the top. Quantitative specifications/requirements are essential to determining the development of new technologies, add specifications and any other desired comments for the top technologies in the adjacent text box.

Lasers							
Optics or electro-optical components							
New vapor cell designs							
Vapor cell packaging and manufacturing methods							
Signal processing methods for specific applications (biomagnetism, geomagnetism, etc.)							
Magnetic field stabilization and control technologies							
Scalable OPM array control technologies							
Other (please specify)							

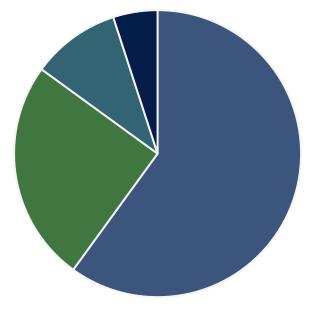
Question 1 - Results

Please rank the impact investments in component technologies could have on the OPM community by dragging the most impactful technologies to the top. Quantitative specifications/requirements are essential to determining the development of new technologies, add specifications and any other desired comments for the top technologies in the adjacent text box.

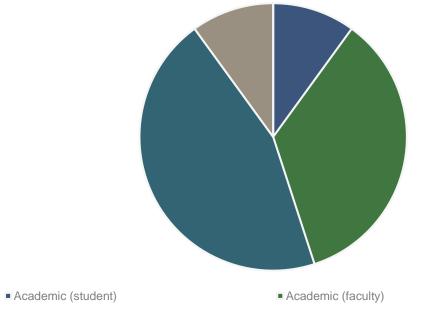
	Average Priority	# in top 3
Vapor cell packaging	2.65	14
Lasers	3.55	10
Vapor cell designs	4.05	10
Magnetic field stabilization and control technologies	4.7	7
Scalable OPM array control technologies	4.75	7
Optics/electro optical components	4.4	6
Signal processing methods for specific applications	5	4
Other	7.8	2

Vapor cell packaging, designs, and lasers most selected

Histogram of enabling technology priority


Question 1 – Comments made in form

Enabling Technology	All Comments							
Lasers	Lasers for pulsed optical pumping: 500 mW	The lack of VCSELs in the UK, and the struggles in mass-producing them, is proving to become problematic for OPM development.	prefer to have multi VCSEL sources. 1k/year now, potentially 100k/year in 5 years.	the laser frequency typically fluctuates by 50 MHz in a day	single	low-nose	high power vcsel	More compact high powered lasers
Optics/electro optical components	Extreme miniaturization for shuttering, amplitude control, and frequency modulation.	intergrated photonic systems, e.g. laser and cells	low-magnetization and high- bandwidth	miniaturized				
Vapor cell designs	Optical coating on the interior surfaces, both AR and HR. Operable up to 200 C for potassium. Sizes ranging from 1 mm^3 to 50 cm^3. Ensure long lifetime of the alkali metal at high temperature.		increase the number of atom and decrease the size of the cell	intra-cell optical elements and coatings	cell is the most important component	more compact	minituriz ed	
	Better thermal insulation. Maintain cell at 150 C for less than 500 mW of power.	High temperature paraffin coating	every bit of reduction in standoff helps	alkali+buffer gas cells with vacuum package	spin protecting cell coating			Labs without cell fabrication could enter the field
Signal processing methods for specific applications								
Magnetic field stabilization and control technologies	For applications off the shelf products would lower development time	Larger dynamic range and mitigation of CAPE	high-stabilization current source	active noise compensation				
Scalable OPM array contro technologies	>100 sensors	considering the cross-talks	Flexible standard electronics would lower costs					
Other	New Sensor Architectures - Dead Zone Free Operation, Low Heading Error, Higher Bandwidth/Dynamic Range etc.	detect high frequency brain signals (70-8,000 Hz)	Improving OPM dynamic range & noise	more attention to long-term stability	turnkey multi-opm- systems			


Respondent data

Breakdown of Survey Respondants (20 total)

• OPM Researcher • OPM User • OPM enabling technology developer • Other

Respondent career stage

Research scientist (non-profit or government lab) Government (program management)

Company

• Other (please specify)

